Parameter Estimation for Computationally Intensive Nonlinear Regression with an Application to Climate Modeling by Dorin Drignei,1
نویسندگان
چکیده
Nonlinear regression is a useful statistical tool, relating observed data and a nonlinear function of unknown parameters. When the parameterdependent nonlinear function is computationally intensive, a straightforward regression analysis by maximum likelihood is not feasible. The method presented in this paper proposes to construct a faster running surrogate for such a computationally intensive nonlinear function, and to use it in a related nonlinear statistical model that accounts for the uncertainty associated with this surrogate. A pivotal quantity in the Earth’s climate system is the climate sensitivity: the change in global temperature due to doubling of atmospheric CO2 concentrations. This, along with other climate parameters, are estimated by applying the statistical method developed in this paper, where the computationally intensive nonlinear function is the MIT 2D climate model.
منابع مشابه
Parameter Estimation for Computationally Intensive Nonlinear Regression with an Application to Climate Modeling
Nonlinear regression is a useful statistical tool, relating observed data and a nonlinear function of unknown parameters. When the parameter-dependent nonlinear function is computationally intensive, a straightforward regression analysis by maximum likelihood is not feasible. The method presented in this paper proposes to construct a faster running surrogate for such a computationally intensive...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملTwo-step Smoothing Estimation of the Time-variant Parameter with Application to Temperature Data
‎In this article‎, ‎we develop two nonparametric smoothing estimators for parameter of a time-variant parametric model‎. ‎This parameter can be from any parametric family or from any parametric or semi-parametric regression model‎. ‎Estimation is based on a two-step procedure‎, ‎in which we first get the raw estimate of the parameter at a set of disjoint time...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008